Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.858
Filtrar
1.
Int J Nanomedicine ; 19: 3405-3421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617795

RESUMO

Background: Natural nanoparticles have been found to exist in traditional Chinese medicine (TCM) decoctions. However, whether natural nanoparticles can influence the oral bioavailability of active compounds has not been elucidated. Using Xie-Bai-San decoction (XBSD) as an example, the purpose of this study was to isolate, characterize and elucidate the mechanism of the nanoparticles (N-XBSD) in XBSD, and further to explore whether the bioavailability of the main active compounds could be enhanced by N-XBSD. Methods: N-XBSD were isolated from XBSD, and investigated its characterization and study of its formation mechanism, and evaluation of its ability to enhance bioavailability of active compounds. Results: The N-XBSD was successfully isolated with the average particle size of 104.53 nm, PDI of 0.27 and zeta potential of -5.14 mV. Meanwhile, all the eight active compounds were most presented in N-XBSD. Kukoamine B could self-assemble with mulberroside A or liquiritin to form nanoparticles, respectively. And the FT-IR and HRMS results indicated the possible binding of the ammonium group of kukoamine B with the phenolic hydroxyl group of mulberroside A or liquiritin, respectively. The established UPLC-MS/MS method was accurate and reliable and met the quantitative requirements. The pharmacokinetic behaviors of the N-XBSD and decoction were similar in rats. Most notably, compared to that of free drugs, the Cmax, AUC0-∞, AUC0-t, T1/2 and MRT0-∞ values of index compounds were the higher in N-XBSD, with a slower plasma clearance rate in rats. Conclusion: The major active compounds of XBSD were mainly distributed in N-XBSD, and N-XBSD was formed through self-assembly among active compounds. N-XBSD could obviously promote the bioavailability of active compounds, indicating natural nanoparticles of decoctions play an important role in therapeutic effects.


Assuntos
Ácidos Cafeicos , Dissacarídeos , Nanopartículas , Espermina/análogos & derivados , Estilbenos , Espectrometria de Massas em Tandem , Animais , Ratos , Disponibilidade Biológica , Cromatografia Líquida , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Int J Nanomedicine ; 19: 3461-3473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617799

RESUMO

Purpose: Ivosidenib (IVO), an isocitrate dehydrogenase-1 (IDH1) used for treatment of acute myeloid leukemia (AML) and cholangiocarcinoma. However, poor solubility, low bioavailability, high dose and side effects limit clinical application of IVO. Methods: Ivosidenib-loaded PLGA nanoparticles (IVO-PLGA-NPs) and Ivosidenib-loaded chitosan coated PLGA nanoparticles (IVO-CS-PLGA-NPs) were prepared using emulsification and solvent evaporation method for the treatment of liver cancer. Results: The developed IVO-PLGA-NPs were evaluated for their particle size (171.7±4.9 nm), PDI (0.333), ZP (-23.0±5.8 mV), EE (96.3±4.3%), and DL (9.66±1.1%); similarly, the IVO-CS-PLGA-NPs were evaluated for their particle size (177.3±5.2 nm), PDI (0.311), ZP +25.9±5.7 mV, EE (90.8±5.7%), and DL (9.42±0.7%). The chitosan coating of IVO-PLGA-NPs was evidenced by an increase in mean particle size and positive ZP value. Because of the chitosan coating, the IVO-CS-PLGA-NPs showed a more stable and prolonged release of IVO than IVO-PLGA-NPs. In comparison to pure-IVO, the IVO-PLGA-NPs and IVO-CS-PLGA-NPs were found to be more effective against HepG2 cells, with IC50 values for the MTT assay being approximately half of those of pure-IVO. In HepG2 cells, the expressions of caspase-3, caspase-9, and p53 were significantly (p < 0.05) elevated. Conclusion: Overall, these findings suggest that chitosan coating of IVO-PLGA-NPs improves the delivery and efficacy of ivosidenib in liver cancer treatment.


Assuntos
Neoplasias dos Ductos Biliares , Quitosana , Glicina/análogos & derivados , Neoplasias Hepáticas , Nanopartículas , Piridinas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Ductos Biliares Intra-Hepáticos
3.
J Ren Nutr ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621432

RESUMO

OBJECTIVE: Previous studies reported mixed results on associations between dietary potassium intake and hyperkalemia in patients with chronic kidney disease (CKD). This study investigated the association between potassium intake from different food sources and hyperkalemia in patients with non-dialysis-dependent CKD. METHODS: A total of 285 patients were recruited at a university hospital and two city hospitals in Tokyo. Dietary potassium intake was estimated by a validated diet history questionnaire. Associations of potassium intake from all foods and individual food groups with serum potassium were examined by multivariable linear regression among potassium binder non-users. An association between tertile groups of potassium intake and hyperkalemia, defined as serum potassium ≥5.0 mEq/L, was evaluated by multivariable logistic regression. RESULTS: Among 245 potassium binder non-users, total potassium intake was weakly associated with serum potassium (regression coefficient = 0.147, 95% confidence interval (CI): 0.018-0.277), while an association with hyperkalemia was not observed (first vs third tertile: adjusted odds ratio (aOR) = 0.98, 95% CI: 0.29-3.26). As for food groups, potassium intakes from potatoes, pulses, and green/yellow vegetables were positively associated with serum potassium. Patients in the highest tertile of potassium intake from potatoes had higher odds of hyperkalemia as compared to those in the lowest tertile (aOR = 4.12, 95% CI: 1.19-14.34). CONCLUSION: Total potassium intake was weakly associated with serum potassium, but not with hyperkalemia. Potassium intake from potatoes was associated with hyperkalemia. These findings highlight the importance of considering food sources of potassium in the management of hyperkalemia in CKD.

4.
Int J Biol Macromol ; : 131516, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621556

RESUMO

Simvastatin (SV) is a statin drug that can effectively control cholesterol and prevent cardiovascular diseases. However, SV is water-insoluble, and poor oral bioavailability (<5 %). Solid self-emulsifying carrier system is more stable than liquid emulsions, facilitating to improve the solubility and bioavailability of poorly soluble drugs. In the present study, a solid self-emulsifying carrier stabilized by casein (Cas-SSE) was successfully used to load SV to improve its solubility in water, by formulation selection and emulsification process optimization. Compared with oral tablets, the release of SV from Cas-SSE was significantly enhanced in artificial intestinal fluid. Furthermore, everted gut sac experiments indicated some water-soluble dispersing agents such as hydroxyethyl starch (HES), were not conducive to drug absorption. Pharmacokinetic studies suggested Cas-SSE without dispersing agent has much higher relative bioavailability (184.1 % of SV and 284.5 % of simvastatin acid) than SV tablet. The present work suggests Cas-SSE is a promising drug delivery platform with good biocompatibility for improving oral bioavailability of poorly water-soluble drugs.

5.
Risk Anal ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622492

RESUMO

Electric arc furnace (EAF) slag is a coproduct of steel production used primarily for construction purposes. Some applications of EAF slag result in residential exposures by incidental ingestion and inhalation of airborne dust. To evaluate potential health risks, an EAF slag characterization program was conducted to measure concentrations of metals and leaching potential (including oral bioaccessibility) in 38 EAF slag samples. Arsenic, hexavalent chromium, iron, vanadium, and manganese (Mn) were identified as constituents of interest (COIs). Using a probabilistic risk assessment (PRA) approach, estimated distributions of dose for COIs were assessed, and increased cancer risks and noncancer hazard quotients (HQs) at the 50th and 95th percentiles were calculated. For the residents near slag-covered roads, cancer risk and noncancer HQs were <1E - 6 and 1, respectively. For residential driveway or landscape exposure, at the 95th percentile, cancer risks were 1E - 6 and 7E - 07 based on oral exposure to arsenic and hexavalent chromium, respectively. HQs ranged from 0.07 to 2 with the upper bound due to ingestion of Mn among children. To expand the analysis, a previously published physiologically based pharmacokinetic (PBPK) model was used to estimate Mn levels in the globus pallidus for both exposure scenarios and further evaluate the potential for Mn neurotoxicity. The PBPK model estimated slightly increased Mn in the globus pallidus at the 95th percentile of exposure, but concentrations did not exceed no-observed-adverse-effect levels for neurological effects. Overall, the assessment found that the application of EAF slag in residential areas is unlikely to pose a health hazard or increased cancer risk.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38624257

RESUMO

Background: Oral and inhalation-based cannabidiol (CBD) administration has been clinically evaluated for various therapeutic indications, alongside widespread off-label use. However, the long-term exposure kinetics and varied bioavailability have not been fully characterized. Methods: Human CBD plasma concentration-time profiles from six studies evaluating the oral administration of Epidiolex® and three studies evaluating inhalation-based delivery were obtained. A four-compartment pharmacokinetic (PK) model with Weibull-based oral absorption kinetics was employed to describe the long-term PKs of CBD. Furthermore, a Cedergreen-Ritz-Streibig model was applied to evaluate nonmonotonic oral bioavailability. Results: CBD was extensively distributed into tissue compartments with varied kinetics resulting in a long plasma terminal elimination half-life of >134 h in humans. For once-a-day oral dosing, the plasma trough concentrations require >70 days to reach a steady state. The oral bioavailability of CBD for different doses administered in fasted state follows a nonmonotonic pattern with an inverted U-shaped profile. Oral administration of CBD under fed state or subjects with hepatic impairment yields higher oral bioavailability with varied exposure. In contrast, inhalation-based delivery of CBD, while delivering a similar systemic delivered dose compared with oral dosing due to high device losses, bypasses first-pass metabolism and can be efficient. Conclusion: CBD PKs vary across different doses due to nonmonotonic oral bioavailability, and inhalation-based delivery could minimize such variability in humans. The delayed attainment of steady state and prolonged terminal half-life, resulting from differential but extensive tissue distribution, needs to be considered when dosing CBD in the long term. These fundamental findings are critical for establishing dose-exposure relationship for further clinical evaluation of novel CBD-based therapies.

7.
Food Sci Biotechnol ; 33(7): 1707-1714, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623436

RESUMO

Attempts to improve low absorption and rapid metabolic conversion of curcumin were made by developing curcumin-loaded bilayer nanoliposomes coated with chitosan and alginate for intestinal-specific drug delivery. A curcumin-loaded nano-liposome was prepared with optimized formulations with phosphatidylcholine, curcumin, chitosan, and alginate. The particle size of the optimized formulation was approximately 400 nm, and the encapsulation efficiency was more than 99%. In the in vitro release study, curcumin release from the curcumin-loaded nanoliposome with double layers of chitosan/alginate (CNL-CH/AL) was suppressed in the simulated gastric fluid (SGF, pH 1.2) and enhanced in the simulated intestinal fluid (SIF, pH 6.8). In the in vivo pharmacokinetic study in rats, the CNL-CH/AL-treated group showed a prolonged absorption pattern of curcumin and the area under the plasma concentration-time curve from 0 to 24 h (AUC0-24) was improved 109-fold compared to the control group treated with a curcumin solution without a nanocarrier.

8.
Curr Drug Discov Technol ; 21(1): e101023222025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629170

RESUMO

Recently, it has been observed that newly developed drugs are lipophilic and have low aqueous solubility issues, which results in a lower dissolution rate and bioavailability of the drugs. To overcome these issues, the liquisolid technique, an innovative and advanced approach, comes into play. This technique involves the conversion of the drug into liquid form by dissolving it in non-volatile solvent and then converting the liquid medication into dry, free-flowing, and compressible form by the addition of carrier and coating material. It offers advantages like low cost of production, easy method of preparation, and compactable with thermo labile and hygroscopic drugs. It has been widely applied for BCS II drugs to enhance dissolution profile. Improving bioavailability, providing sustained release, minimizing pH influence on drug dissolution, and improving drug photostability are some of the other promising applications of this technology. This review article presents an overview of the liquisolid technique and its applications in formulation development.


Assuntos
Biofarmácia , Química Farmacêutica , Química Farmacêutica/métodos , Solubilidade , Liberação Controlada de Fármacos , Água , Comprimidos
9.
Huan Jing Ke Xue ; 45(5): 3047-3058, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629565

RESUMO

In order to comprehensively evaluate the effects of vermicomposting on compost quality and the conversion of heavy metals under different control conditions, 109 studies were reviewed. The effects of earthworm species, pre-compost time, ventilation methods, initial C/N, initial pH, and initial moisture of the raw materials on compost quality and the heavy metal toxicity were quantitatively discussed during the vermicomposting process through Meta-analysis. The results showed that the six subgroups of factors all showed obvious influences on the compost quality and heavy metal toxicity. After vermicomposting, the contents of NO3--N (116.2%), TN (29.1%), TP (31.2%), and TK (15.0%) were significantly increased, whereas NH4+-N (-14.8%) and C/N (-36.3%) were significantly decreased. Meanwhile, the total amount of Cu and Cr of the final compost and their bioavailability were significantly reduced. Considering the influences of grouping factors on compost quality and heavy metals, it is recommended to adjust the initial moisture of pile materials to 70%-80%, C/N to 30-85, and pH to 6-7 and to conduct pre-composting for 0-15 d; additionally, vermicomposting should be naturally placed when the composting is aimed at promoting the compost quality. If the main purpose is to weaken the perniciousness of heavy metals in the raw material, it is recommended to adjust the initial moisture of the material to 50%-60%, C/N to less than 30, and pH to 7-8; to conduct no pre-compost; regularly turn the piles; and use the earthworm Eudrilus eugeniae for vermicomposting.


Assuntos
Compostagem , Metais Pesados , Oligoquetos , Animais , Solo/química , Esgotos/química , Metais Pesados/análise
10.
Environ Int ; 186: 108635, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38631261

RESUMO

To overcome ethical and technical challenges impeding the study of human dermal uptake of chemical additives present in microplastics (MPs), we employed 3D human skin equivalent (3D-HSE) models to provide first insights into the dermal bioavailability of polybrominated diphenyl ether (PBDEs) present in MPs; and evaluated different factors influencing human percutaneous absorption of PBDEs under real-life exposure scenario. PBDEs were bioavailable to varying degrees (up to 8 % of the exposure dose) and percutaneous permeation was evident, albeit at low levels (≤0.1 % of the exposure dose). While the polymer type influenced the release of PBDEs from the studied MPs to the skin, the polymer type was less important in driving the percutaneous absorption of PBDEs. The absorbed fraction of PBDEs was strongly correlated (r2 = 0.88) with their water solubility, while the dermal permeation coefficient Papp of PBDEs showed strong association with their molecular weight and logKOW. More sweaty skin resulted in higher bioavailability of PBDEs from dermal contact with MPs than dry skin. Overall, percutaneous absorption of PBDEs upon skin contact with MPs was evident, highlighting, for the first time, the potential significance of the dermal pathway as an important route of human exposure to toxic additive chemicals in MPs.

11.
J Environ Manage ; 358: 120838, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608576

RESUMO

The soil selenium (Se) content and bioavailability are important for human health. In this regard, knowing the factors driving the concentration of total Se and bioavailable Se in soils is essential to map Se, enhance foodstuffs' Se content, and improve the Se nutritional status of humans. In this study, total Se and Se bioavailability (i.e., phosphate extracted Se) in surface soils (0-20 cm) developed on different strata were analyzed in a Se-enriched region of Southwest China. Furthermore, the interaction between the stratum and soil properties was assessed and how did the stratum effect on the concentration and spatial distribution of Se bioavailability in soils was investigated. Results showed that the median concentration of total Se in soils was 0.308 mg/kg, which is higher than China's soil background. The mean proportion of phosphate extracted Se in total Se was 12.2 %. The values of total Se, phosphate extracted Se, and soil organic matter (SOM) in soils increased with the increasing stratum age. In contrast, the coefficient of weathering and eluviation (BA) values decreased. The analysis of statistics and Geodetector revealed that the SOM, stratum, and BA were the dominant controlling factors for the contents and distributions of soil total Se and phosphate extracted Se. This study provided strong evidence that the soil properties that affected the total Se and Se bioavailability were modulated by the local geological background, and had important practical implications for addressing Se malnutrition and developing the Se-rich resource in the study region and similar geological settings in different parts of the globe.

12.
Food Chem ; 449: 139310, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38608612

RESUMO

This study investigated the effects of the conjugate reaction sequences of whey protein concentrate (WPC), epigallocatechin gallate (EGCG) and dextran (DEX) on the structure and emulsion properties of conjugates and the bioaccessibility of astaxanthin (AST). Two types of ternary covalent complexes were synthesised using WPC, EGCG and DEX, which were regarded as emulsifiers of AST nanoemulsions. Results indicated that the WPC-DEX-EGCG conjugate (referred to as 'con') exhibits a darker SDS-PAGE dispersion band and higher contents of α-helix (6%), ß-angle (24%) and random coil (32%), resulting in a greater degree of unfolding structure and fluorescence quenching. These findings suggested WPC-DEX-EGCG con had the potential to exhibit better emulsification properties than WPC-EGCG-DEX con. AST encapsulation efficiency (76.22%) and bioavailability (31.89%) also demonstrated the superior performance of the WPC-DEX-EGCG con emulsifier in nanoemulsion delivery systems. These findings indicate that altering reaction sequences changes protein conformation, enhancing the emulsification properties and bioavailability of AST.

13.
Cell Rep ; 43(4): 114101, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38613786

RESUMO

Syntaxin-1A (stx1a) repression causes a neurodevelopmental disorder phenotype, low latent inhibition (LI) behavior, by disrupting 5-hydroxytryptaminergic (5-HTergic) systems. Herein, we discovered that lysine acetyltransferase (KAT) 3B increases stx1a neuronal transcription and TTK21, a KAT3 activator, induces stx1a transcription and 5-HT release in vitro. Furthermore, glucose-derived CSP-TTK21 could restore decreased stx1a expression, 5-HTergic systems in the brain, and low LI in stx1a (+/-) mice by crossing the blood-brain barrier, whereas the KAT3 inhibitor suppresses stx1a expression, 5-HTergic systems, and LI behaviors in wild-type mice. Finally, in wild-type and stx1a (-/-) mice treated with IKK inhibitors and CSP-TTK21, respectively, we show that KAT3 activator-induced LI improvement is a direct consequence of KAT3B-stx1a pathway, not a side effect. In conclusion, KAT3B can positively regulate stx1a transcription in neurons, and increasing neuronal stx1a expression and 5-HTergic systems by a KAT3 activator consequently improves the low LI behavior in the stx1a ablation mouse model.

14.
Nutrients ; 16(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38613047

RESUMO

Docosahexaenoic acid (DHA) is an essential fatty acid (FA) with proven pro-health effects, but improving its bioavailability is becoming a public health issue. The bioavailability of DHA from microalgal (A) oil has been comprehensively assessed, particularly in terms of the molecular structuring capabilities offered by A-oil. Here, we explored the impact of five DHA-rich formulas differing in terms of (i) molecular structure, i.e., ethyl ester (EE), monoglyceride (MG), or triglyceride (TG), and (ii) supramolecular form, i.e., emulsified TG or TG + phospholipids (PL blend) on the lymphatic kinetics of DHA absorption and the lipid characteristics of the resulting lipoproteins. We demonstrated in rats that the conventional A-DHA TG structure afforded more effective DHA absorption than the EE structure (+23%). Furthermore, the A-DHA MG and A-DHA emulsions were the better DHA vectors (AUC: 89% and +42%, respectively) due to improved lipolysis. The A-DHA MG and A-DHA emulsion presented the richest DHA content in TG (+40%) and PL (+50%) of lymphatic chylomicrons, which could affect the metabolic fate of DHA. We concluded that structuring A-DHA in TG or EE form would better serve for tissue and hepatic metabolism whereas A-DHA in MG and emulsion form could better target nerve tissues.


Assuntos
Ácidos Docosa-Hexaenoicos , Microalgas , Animais , Ratos , Disponibilidade Biológica , Emulsões , Glicerídeos , Exame Físico , Triglicerídeos , Ésteres
15.
Nutrients ; 16(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38613055

RESUMO

Only some of the nutrients consumed with food are able to be absorbed from the gastrointestinal (GI) tract and enter the systemic circulation (blood). Because some elements are essential minerals for humans, their beneficial effect on the body depends significantly on their bioavailable amount (the fraction that can be absorbed and used by the organism). The term bioavailability, which is very often used to describe the part of nutrients that is able to be absorbed, is influenced by various factors of exogenous and endogenous origin. The main purpose of the study was to assess the relative bioavailability of Cr from selected dietary supplements in the presence of various types of diets, which significantly influence the level of bioavailability. The research was performed using a previously developed and optimized two-stage in vitro digestion model using cellulose dialysis tubes of food rations with the addition of pharmaceutical products. Cr was determined using the ICP-OES and GF-AAS methods, depending on its concentration in particular fractions. The determined relative bioavailability ranged between 2.97 and 3.70%. The results of the study revealed that the type of diet, the chemical form of the molecule, and the pharmaceutical form of preparations have a significant influence on the bioavailability of Cr.


Assuntos
Suplementos Nutricionais , Diálise Renal , Humanos , Disponibilidade Biológica , Polônia , Nutrientes
16.
Nutrients ; 16(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613057

RESUMO

Evidence suggests that tart cherry (TC) supplementation has beneficial effects on health indices and recovery following strenuous exercise. However, little is known about the mechanisms and how TC might modulate the human metabolome. The aim of this study was to evaluate the influence of an acute high- and low-dose of Vistula TC supplementation on the metabolomic profile in humans. In a randomised, double-blind, placebo controlled, cross-over design, 12 healthy participants (nine male and three female; mean ± SD age, stature, and mass were 29 ± 7 years old, 1.75 ± 0.1 m, and 77.3 ± 10.5 kg, respectively) visited the laboratory on three separate occasions (high dose; HI, low dose; LO, or placebo), separated by at least seven days. After an overnight fast, a baseline venous blood sample was taken, followed by consumption of a standardised breakfast and dose conditions (HI, LO, or placebo). Subsequent blood draws were taken 1, 2, 3, 5, and 8 h post consumption. Following sample preparation, an untargeted metabolomics approach was adopted, and the extracts analysed by LCMS/MS. When all time points were collated, a principal component analysis showed a significant difference between the conditions (p < 0.05), such that the placebo trial had homogeneity, and HI showed greater heterogeneity. In a sub-group analysis, cyanidine-3-O-glucoside (C3G), cyanidine-3-O-rutinoside (C3R), and vanillic acid (VA) were detected in plasma and showed significant differences (p < 0.05) following acute consumption of Vistula TC, compared to the placebo group. These results provide evidence that phenolics are bioavailable in plasma and induce shifts in the metabolome following acute Vistula TC consumption. These data could be used to inform future intervention studies where changes in physiological outcomes could be influenced by metabolomic shifts following acute supplementation.


Assuntos
Prunus avium , Humanos , Feminino , Masculino , Adulto Jovem , Adulto , Metaboloma , Metabolômica , Estatura , Desjejum
17.
J Microencapsul ; : 1-15, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618699

RESUMO

AIMS: Myricetin (MYR) was incorporated into pH-sensitive liposomes in order to improve its bioavailability and anti-hyperuricemic activity. METHODS: The MYR pH-sensitive liposomes (MYR liposomes) were prepared using thin film dispersion method, and assessed by particle size (PS), polydispersed index (PDI), zeta potential (ZP), encapsulation efficiency, drug loading, and in vitro release rate. Pharmacokinetics and anti-hyperuricemic activities were also evaluated. RESULTS: The PS, PDI, ZP, encapsulation efficiency, and drug loading of MYR liposomes were 184.34 ± 1.05 nm, 0.215 ± 0.005, -38.46 ± 0.30 mV, 83.42 ± 1.07%w/w, and 6.20 ± 0.31%w/w, respectively. The release rate of MYR liposomes was higher than free MYR, wherein the cumulative value responded to pH. Besides, the Cmax of MYR liposomes was 4.92 ± 0.20 µg/mL. The level of uric acid in the M-L-H group (200 mg/kg) was reduced by 54.74%w/v in comparison with the model group. CONCLUSION: MYR liposomes exhibited pH sensitivity and could potentially enhance the oral bioavailability and anti-hyperuricemic efficacy of MYR.

18.
Vet Res Commun ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630426

RESUMO

Feed and water components may interact with drugs and affect their dissolution and bioavailability. The impact of the vehicle of administration (feed and water) and the prandial condition of weaner piglets on amoxicillin´s oral bioavailability was evaluated. First, amoxicillin's in vitro dissolution and stability in purified, soft, and hard water, as well as release kinetics from feed in simulated gastric and intestinal media were assessed. Then, pharmacokinetic parameters and bioavailability were determined in fasted and fed pigs using soft water, hard water, or feed as vehicles of administration following a balanced incomplete block design. Amoxicillin showed similar dissolution profiles in soft and hard water, distinct from the dissolution profile obtained with purified water. Complete dissolution was only achieved in purified water, and merely reached 50% in soft or hard water. Once dissolved, antibiotic concentrations decreased by around 20% after 24 h in all solutions. Korsmeyer-Peppas model best described amoxicillin release from feed in simulated gastric and intestinal media. Feed considerably reduced antibiotic dissolution in both simulated media. In vivo, amoxicillin exhibited significantly higher bioavailability when delivered via water to fasted than to fed animals, while in-feed administration yielded the lowest values. All treatments showed a similar rate of drug absorption. In conclusion, we demonstrated that water and feed components, as well as feed present in gastrointestinal tract of piglets decrease amoxicillin´s oral bioavailability. Therefore, the use of oral amoxicillin as a broad-spectrum antibiotic to treat systemic infections in pigs should be thoroughly revised.

19.
Environ Monit Assess ; 196(5): 448, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607467

RESUMO

Soil in mining wastelands is seriously polluted with heavy metals. Zero-valent iron (ZVI) is widely used for remediation of heavy metal-polluted soil because of its excellent adsorption properties; however, the remediation process is affected by complex environmental conditions, such as acid rain and freeze-thaw cycles. In this study, the effects of different pH values and freeze-thaw cycles on remediation of antimony (Sb)- and arsenic (As)-contaminated soil by ZVI were investigated in laboratory simulation experiments. The stability and potential human health risks associated with the remediated soil were evaluated. The results showed that ZVI has a significant stabilizing effect on Sb and As in both acidic and alkaline soils contaminated with dual levels of Sb and As, and the freeze-thaw process in different pH value solution systems further enhances the ability of ZVI to stabilize Sb and As, especially in acidic soils. However, it should be noted that apart from the pH=1.0 solution environment, ZVI's ability to stabilize As is attenuated under other circumstances, potentially leading to leaching of its unstable form and thereby increasing contamination risks. This indicates that the F1 (2% ZVI+pH=1 solution+freeze-thaw cycle) processing exhibits superior effectiveness. After F1 treatment, the bioavailability of Sb and As in both soils also significantly decreased during the gastric and intestinal stages (about 60.00%), the non-carcinogenic and carcinogenic risks of Sb and As in alkaline soils are eliminated for children and adults, with a decrease ranging from 60.00% to 70.00%, while in acidic soil, the non-carcinogenic and carcinogenic risks of As to adults and children is acceptable, but Sb still poses non-carcinogenic risks to children, despite reductions of about 65.00%. These findings demonstrate that soil pH is a crucial factor influencing the efficacy of ZVI in stabilizing Sb and As contaminants during freeze-thaw cycles. This provides a solid theoretical foundation for utilizing ZVI in the remediation of Sb- and As-contaminated soils, emphasizing the significance of considering both pH levels and freeze-thaw conditions to ensure effective and safe treatment.


Assuntos
Antimônio , Arsênio , Humanos , Adulto , Criança , Ferro , Monitoramento Ambiental , Medição de Risco , Solo , Concentração de Íons de Hidrogênio
20.
Foods ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611409

RESUMO

Luteolin (LUT) is a fat-soluble flavonoid known for its strong antioxidant and anti-inflammatory properties. Nonetheless, its use in the food industry has been limited due to its low water solubility and bioavailability. In this study, hyaluronic acid, histidine, and luteolin were self-assembled to construct tubular network hydrogels (HHL) to improve the gastrointestinal stability, bioavailability, and stimulation response of LUT. As anticipated, the HHL hydrogel's mechanical strength and adhesion allow it to withstand the challenging gastrointestinal environment and effectively extend the duration of drug presence in the body. In vivo anti-inflammatory experiments showed that HHL hydrogel could successfully alleviate colitis induced by dextran sulfate sodium (DSS) in mice by reducing intestinal inflammation and restoring the integrity of the intestinal barrier. Moreover, HHL hydrogel also regulated the intestinal microorganisms of mice and promoted the production of short-chain fatty acids. The HHL hydrogel group demonstrated a notably superior treatment effect compared to the LUT group alone. The hydrogel delivery system is a novel method to improve the absorption of LUT, increasing its bioavailability and enhancing its pharmaceutical effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...